
Experiences with the AT&T

Pixel Machine at NAS

G. David Kerlick 1

Report RNR-89-001, March 1989

Computer Sciences Corporation
NASA Ames Research Center

Moffett Field CA 94035, USA

Abstract. This paper summarizes some experiences applying the AT&T Pixel Machine TM

to problems of interest in applied computational aerodynamics. These included applications of

texture mapping and ray tracing to checking of computational patch geometries. Typical timings

for a 964dx Pixel Machine and Sun 3/260 host are given.

1This work was supported by NASA Contract NAS 2-11555 while the author was an employess of
Sterling Software under contract to the Numerical Aerodynamic Simulation Systems Division at NASA
Ames Research Center.

March 21, 1989

Copies of this report are available from:

NAS Applied Research Office

Mail Stop 258-5
NASA Ames Research Center

Moffett Field CA 94035

(415)-694-5197



Experiences with the AT&T Pixel Machine at NAS

Background:

AT&T Pixel Machines (PM) has made available to NASa "near-production"

version of their high-end machine, the 964dx, which has a total of 82 Digital Signal

Processing (DSP) chips arranged in an 8x8 array of "pixel nodes," and 2 "pipelines" of

9 DSP's each. Generally speaking, the pixel node array is used for pixel-based

operations (like ray-tracing, rendering, compositing, z-buffering, usually acting on

8x8 "footprints" of pixels) and the pipes are used for processing vectors and polygons

(very much like SGI's geometry engines). The Pixel machine relies on a host

machine, in our case a Sun 3/260, to do non-graphics operations, and hides the

graphics operations on the DSP's in graphics libraries.

We were provided with PIClib, which is a graphics library similar to SGI's GL2

and with RAYlib, which is has similar commands, but is dedicated to raytracing. PM

has promised a volume rendering library at some indefinite future date.

It is possible to program the chips directly to do other operations. Most notably,

ACT (New Mexico) programmed the block tridiagonal inversions from ARC2D onto

the pixel nodes and realized 27 "real" megaflops on those parts of the code. Tony

Hasegawa has the source code for this. It is quite a job, almost but not quite as bad as

writing assembly language, but one does have constantly to check status between the

host and the DSP's.

The PM is optimized for pixel-based operations. These occur primarily in the

image processing arena, and less so in the vector- and polygon-based computer

graphics area. These areas overlap only slightly at present, but that the area of

overlap will increase, particularly as processing speeds increase to the point where

some of these operations can be handled interactively.

RNR-89-001 page 2



Benchmarks:

Kevin McCabe [personal communication] has reported separately about the

performance of the PM on NAS Graphics benchmarks and got results of 2500

polys/sec in the "Optional Faceted Test #7" and 1500 polys/sec in the "Optional

Gouraud Test #8." He concludes that these figures are lower by an order of

magnitude from other currently available workstations. I found that one gets

numbers like these (or better) for texture-mapped polygons as well, i.e. there no

penalty for texture mapping.

I had intended to look at three areas of applications, but only got around to two

of them. I looked at texture mapping and ray-tracing, both of which are useful in

the area of geometry definition and checking. In particular, the texture mapping and

ray-tracing capabilities of the PM can be used to check bicubic patch geometries for

accuracy.

Texture Mapping:

In texture mapping, one can map a pattern (even a digitized photo) onto

bicubic patches or other primitives. For our purposes, a regular stripe or

checkerboard is best. This method allows one to check on the location of patch

boundaries, look for holes, and the like. It is usually slower than Gouraud shading,

but more than an order of magnitude faster than raytracing.

Several different patch objects were texture mappedd, ranging from a single

patch to the Martin Newell teapot (28 patches) to significant (1920-patch)

components of Chris Atwood's F-16 patch model. While useful for timing purposes,

a model with more than about 100 patches produces images where the texture is not

clearly visible.

RNR-89-001 page 3



The PM supports the common patch bases(Hermite, Bezier,B-spline and

Cardinal-spline) for cubic patches. NURBS (Non-Uniform Rational B-Splines)are

not supported asyet. Two "patch precision" parameters (precu,precv) vary between

2 and n. The number of triangles produced is 2*(precu-1)*(precv-1), i.e. roughly as

the squareof the precision. The drawing time is proportional to the number of

polygons, henceproportional to the products of the precisions.

Some timings for the F-16fuselageare given here. The overall rates areabout

5000-6000lighted (4 sources)texture-mapped triangles per second. The rendering

was done in an iteration loop, and averaged over 10 iterations or more.

Texture Mapping timings:

For Chris Atwood's F-16 fuselage (1920) patches 512x512 screen, 40x80 pixel image size

Precision triangles/patch triangles timing polys/sec

3-3 8 15,360 2.8 5500

5-5 32 61,440 10.2 6100

7-7 72 138,240 28.5 4500
9-9 128 245,760 40.0 6100

Raytracing:

Raytracing can be used to produce a "reflection map" of a patch object. Thus,

for example, an aircraft that is being modeled can be made highly reflective (mirror

finish) and placed in front of a textured background (vertical stripes are common)

and the viewer can be positioned to look at the reflections of the model. This effect

is commonly used in the automotive industry to check stampings for defects. This is

a particularly good method for checking continuity across patch boundaries, where

texture mapping won't work.

RNR-89-001 page 4



There are somestandard ray-tracing "benchmarks," most notably thoseof Eric

Haines, but they are not particularly suited to the sorts of usesthat we would expect

to encounter. The usual models have lots of spherical reflective surfaces,lenses,

mirrors, and procedural objects. Things which affect the timing of a ray-tracer are

the number of bounding volumes, the image sizeon the screen(both the whole

sceneand the sub-components), the number of discreet objects,and the depth of

recursion. In the casesnoted below, all imagesare512x512pixels, and the standard

recursion depth on the PM is 16. (This is rather high, so comparisons with other

ray-tracers might be misleading if they are much shallower.)

One thing that I found in the ray tracing work is that judicious useof bounding

volumes around disjoint components of objects,can lead to dramatic speedups in

raytracing an object (up to a factor of three wasobserved).

I chosethe same two two examples. Thefirst is the Martin-Newell teapot of 28

patches (27,missing one?). The secondwas the lower fuselagepatchesfrom Chris

Atwood's F-16model (1920patches). This was too many patches for a useful picture,

asthere were generally many polygons per pixel. These timings are for at least two
runs on an unloaded Sun and PM.

For a single patch, a precision of 16was about enough to causeasingle

raytracing (patch and two spheres) to take over two hours of CPUtime. The longest

processing times I tried were of the order of 16hours. There was apage fault on a

single DSPduring two of theseexecutions that lasted ten hours or more, and two of

them cameoff without a fault, so the hardware failure rate is significant for

"overnight" type runs. Here are the results of ray-tracing a figure with two extra

reflecting spheres.At least three runs were conducted for eachtest.

RNR-89-001page5



Raytracing Timings:

Single bicubic Bezier patch, texture -mapped backgkound

2 reflecting spheres, 5 bounding volumes (including one overall) 512x512 pixel image.

Precision triangles/patch time (sec) triangles/sec

3-3 8 11+1 0.72
5-5 32 26+1 1.28
7-7 72 50+-2 1.44
9-9 128 85+3 1.51
17-17 512 325+10 1.58
33-33 2048 1375+_30 1.49

tea.neu

The Martin Newell Teapot, 27 bicubic Hermite patches, 29 bounding volumes,
2 reflecting spheres, 512x512 screen, image size app 256x256 pixels

Precision triangles/patch triangles sec triangles/sec

3-3 8 216 8.0+-.2 27

5-5 32 864 18.0&_.3 48
7-7 72 1944 33.7+.3 58
9-9 128 3456 630.+10 5.5
11-11 200 5400 2080.+60 2.6

fusl.pat

Chris Atwood's F-16 lower fuselage, 1920 bicubic B-spline patches, 1921 bounding volumes,
two reflecting spheres, ray-traced 512x512 screen, image size 100x100 pixels

Precision triangles/patch triangles sec triangles/sec
3-3 8 15,360 120.+_15 128
5-5 32 61,440 990.+_30 62
7-7 72 138,240 3300.+_50 42

Need for Software, Compatibility, Connectivity &c.

It is a fine thing to obtain new hardware, but its potential is not really tapped until

there is also comprehensive and easy-to-use software. Otherwise, we are constantly

on the low end of the learning curve, gathering expertise slowly, only to be back at

square one when a new machine arrives on the loading dock.

RNR-89-001 page 6



Required software goes beyond the realm of graphics libraries, and extends to

functions like metafile support, I/O to hardcopy devices, and "glue" programs of the

sort mentioned in the NSF ViSC report. We never did get a hardcopy off this

machine: the labor involved would have been considerable. The "img" format

used in the PM is supposedly proprietary. Can we have a translator? This is

especially true in the case of the PM since one of the things it is good for is preparing

images with depth-buffering, anti-aliasing, digital compositing, etc. This is not of

much use without the capability to read in and use files from other systems.

In order to make serious use of a ray-tracer, it is necessary to have an interactive

program to set the scene. The same will be true of volume visualization methods.

In the present case, this means that the PIClib code and RAYlib code have to be in

the same module, separated by system calls which reprogram the DSP's. I managed

to do this; the time to re-load the DSP's is about 10-15 sec per call.

Recommendations to NAS:

Image processing will increasingly overlap with our present practice in computer

graphics, particularly if digitized experimental data is to be compared with

calculation. The Pixel Machine is undoubtedly useful for non-CFD applications in

NASA like LANDSAT imagery interpretation. The PM could be useful in the graphics

production area, especially in the production of high-quality still images with good

compositing, etc., but it would require a dedicated person to develop software and

interfaces for it. It is too expensive to use as a personal workstation, and has

interactive capability which, except for texture mapping, is outclassed by current

graphics-only workstations. The computing capabilities for small ARC2D segments

are impressive, but since usual NAS problems outstrip the capabilities of the largest

available supercomputers, it is hard to see what flow problems are usefully done on

a workstation. It is certainly worth keeping track of new developments of the PM,

especially if good, fast -¢olume rendering can be demonstrated. CI

RNR-89-001 page 7


